返回列表 回复 发帖

干细胞先锋创建恢复视力的视网膜修补程序

2013年4月5日-威斯康星-麦迪逊大学的大卫博士GAMM的领导的一个研究小组,是向前迈出一大步,在发展的愿景恢复,基于干细胞疗法与先进的视网膜疾病的人。900,000美元的资金来自基金会的转化研究加速计划(TRAP),球队正在建设一个两层的补丁的细胞,以取代失去条件,如色素性视网膜炎,年龄相关性黄斑变性的视网膜组织的补丁,GAMM博士认为,重建视网膜多种细胞类型时死于疾病是最好的策略。他以前的陷阱资助的研究成果的基础上,他有信心,这种做法将让他更接近人类治疗的临床试验。“在2008年,我们开始我们的第一个陷阱出让干细胞的诱导多能干细胞(iPS细胞)后-从皮肤或血液-首次创建“博士GAMM解释。“当时,没有人甚至表明,iPS细胞可以被制作成视网膜细胞。我们和其他人已经成功地这样做。一直持续的挑战来获得移植的细胞病变视网膜生存的恶劣环境,适当地安排自己,并进行必要的连接,恢复视力。我相信我们有正确的计划,以实现这一目标做出了巨大的进步。“ 博士 GAMM的合作者- DRS。丹尼斯·克莱格,圣巴巴拉加州大学的詹姆斯·汤姆森(James Thomson),莫格里奇研究所的研究和德里克喜,威斯康星-麦迪逊大学的-将创建一个补丁组成的两层干细胞。其中一层将作为使视觉杆和视锥细胞,或光感受器的前兆,一旦移植,他们将成熟的成光感受器。其他层将包括成熟的视网膜色素上皮细胞(RPE),提供垃圾处理和营养光感受器。克莱格博士的研究小组开发的薄薄的塑料薄膜将作为一个结构性的骨干补丁。一种可生物降解的凝胶保护细胞,并一起按住层。  “在许多视网膜疾病,视网膜色素上皮和光感受器丢失,需要更换,说:”博士GAMM。“我们不希望,非结构化混合移植的视网膜色素上皮和光感受器,因为他们不太可能整合和正常运行,尤其是在遭受重大变性的视网膜。应该给我们的补丁-预成型结构更类似于一种天然的视网膜-细胞生存和愿景的一个更好的机会。“ 博士 GAMM的研究小组还利用资金从基金会拨款,iPSCs的“超级捐助创建线,”人的细胞和组织提供了一个显着比例的大众免疫匹配。与接收方正确匹配时,细胞是不太可能被拒绝。该小组的目标是有一个“现成的”IPSC的存货,可用于几乎所有的病人,无论疾病或免疫系统配置文件创建补丁。为了实现这个重要目标,而受益最大的一些人可能,博士GAMM的组合作,基于麦迪逊公司细胞动力学国际和魏斯曼生物制造设施。虽然iPS细胞可以从每个病人情况逐案例的基础上,博士GAMM说超捐助者的解决方案是技术简单,成本更低,并可能工作一样有效。他的研究将有助于证实了这种方法的可行性和好处。博士 GAMM承认,他和他的同事们将尽可能多的学习研究过程,其最终结果。“我们正在推动信封移栽多种细胞类型,”他说。“但一路走来,我们会回答一些重要问题:我们能否做出正确对齐与另一个细胞?难道他们突触和挂接到其他细胞?什么是最好的方式移植到他们,让他们健康,促进他们与一个患病的视网膜内?这不是一件容易的事,但也不是那些从iPSC的早在2008年的第一视网膜细胞。我们达到我们的目标,那么,我相信我们会继续前进。“
Stem Cell Pioneers Creating Retinal Patch to Restore Vision

April 5, 2013 – A research team headed by Dr. David Gamm of the University of Wisconsin-Madison is about to take a big step forward in developing a vision-restoring, stem-cell-based therapy for people with advanced retinal diseases. With $900,000 in funding from the Foundation’s Translational Research Acceleration Program (TRAP), the team is constructing a two-layered patch of cells to replace retinal tissue lost from conditions like retinitis pigmentosa and age-related macular degeneration.

The patch, Dr. Gamm believes, is the best strategy for reconstructing the retina when multiple cell types have succumbed to disease. Building on his previous TRAP-funded research, he is confident that this approach will get him closer to a clinical trial for a human therapy.

“We started our first TRAP grant in 2008 just after induced pluripotent stem cells (iPSCs) — stem cells derived from skin or blood — were first created,” Dr. Gamm explains. “At the time, no one had even shown that iPSCs could be made into retinal cells. We and others have succeeded in doing that. The continuing challenge has been to get the transplanted cells to survive the hostile conditions of the diseased retina, arrange themselves appropriately and make the necessary connections to restore vision. I believe we have the right plan to make tremendous progress toward that goal.”

Dr. Gamm’s collaborators — Drs. Dennis Clegg, of the University of California, Santa Barbara; James Thomson, of the Morgridge Institute for Research; and Derek Hei, of the University of Wisconsin-Madison — will create a patch consisting of two layers of stem cells. One layer will serve as the precursors to vision-enabling rods and cones, or photoreceptors; once transplanted, they will mature into photoreceptors. The other layer will consist of mature retinal pigment epithelial (RPE) cells, which provide waste disposal and nutrition for photoreceptors. A thin plastic film developed by Dr. Clegg’s group will serve as a structural backbone for the patch. A biodegradable gel will protect the cells and hold the layers together.  

“In many retinal diseases, both RPE and photoreceptors are lost and need to be replaced,” says Dr. Gamm. “We don’t want to transplant an unstructured mix of RPE and photoreceptors, because they aren’t likely to integrate and function properly, especially in a retina that’s suffered significant degeneration. Our patch — a pre-formed structure that better resembles a natural retina — should give the cells a much better chance of surviving and providing vision.”

Dr. Gamm’s group is also using funds from the Foundation grant to create lines of iPSCs from “super donors,” people whose cells and tissues provide an immune match for a significant percentage of the general public. When properly matched with the recipient, the cells are less likely to be rejected. The team’s goal is to have an “off-the-shelf” iPSC inventory that can be used to create patches for virtually any patient, regardless of the disease or immune system profile. To accomplish this important goal, and benefit the largest number of people possible, Dr. Gamm’s group has partnered with the Madison-based company Cellular Dynamics International and the Waisman Biomanufacturing Facility.

While iPSCs can be derived from each patient on a case-by-case basis, Dr. Gamm says the super-donor solution is technically simpler, less costly and may work just as effectively. His research will help bear out this approach’s feasibility and benefits.

Dr. Gamm acknowledges that he and his colleagues will learn as much from the research process as its final outcomes. “We’re pushing the envelope by transplanting multiple cells types,” he says. “But along the way, we will answer several important questions: Can we make cells that align correctly with one another? Do they make synapses and hook up to other cells? What is the best way to transplant them, keep them healthy and promote their integration within a diseased retina? It’s not an easy task, but neither was making those first retinal cells from iPSC back in 2008. We reached our goals then, and I am confident we’ll keep moving forward.”
谢谢分享!
期待有一天能飞翔!
这么说还是在研究?哪就继续期待中。。。。。。。。
坚持终归否极泰来.坚信高科技一定会带我走出困境.走向我梦想的远方...........
谢谢楼主分享
谢谢楼主分享
看好这个研究
谢谢楼主的分享.期待着好的效果.
谢谢楼主的分享,这个研究有点意思!
成 人达己,成己达人!
很期待,可以早一点有治疗我孩子病的方法
返回列表