返回列表 回复 发帖

刚在推特上看到有关RP的资料(外语)

本帖最后由 命中注定 于 2011-8-12 22:27 编辑

在推特上发现上中文RP的信息没有,但英文的资料有好多,而且更新都在几分钟和几天内,收集几个他们的信息发布上来。因为推特的信息也无法保证真实性,因为世界各地的网友都可以在上面发布信息(中国大陆除外)。
Researchers find new genetic cause of blinding eye disease

Combining the expertise of several different labs, University of Iowa researchers have found a new genetic cause of the blinding eye disease retinitis pigmentosa (RP) and, in the process, discovered an entirely new version of the message that codes for the affected protein.

Using the latest DNA sequencing techniques to analyze the protein-coding regions of a single RP patient's genome, the researchers found a mutation in a gene called MAK (male germ cell associated kinase). This gene had not previously been associated with eye disease in humans. However, examining tissue from donated eyes showed that MAK protein was located in the parts of the retina that are affected by the disease.

The researchers then generated induced pluripotent stem cells (iPSCs) from the patient's own skin cells and coaxed these immature cells to develop into retinal tissue. Analyzing this tissue showed that the gene mutation caused the loss of the MAK protein in the retina.

"These new technologies have greatly enhanced our ability to find and validate disease-causing mutations, which is critical to our ability to progress to the next step of actually treating diseases like RP," said Budd Tucker, Ph.D., UI assistant professor of ophthalmology and visual science and lead study author.

RP is an uncommon, inherited blinding eye disease that affects about 1 in 4,000 people in the United States. It is thought to be caused by mutations in more than 100 different genes, only half of which have been identified.

Having found the MAK mutation in one patient, UI researchers led by Edwin Stone, M.D., Ph.D., a Howard Hughes Medical Institute investigator and director of the UI Institute for Vision Research, screened the DNA of 1,798 patients with RP and identified 20 additional individuals with the same MAK mutation. This result suggests that the new MAK mutation accounts for about 1.2 percent of RP cases in the general population. Interestingly, all 21 of the RP patients with the MAK mutation were of Jewish descent, suggesting that the mutation may be a significant cause of RP in this population.

Work in the lab of Robert Mullins, Ph.D., UI associate professor of ophthalmology and visual sciences, showed that MAK protein was produced in the cells most affected by RP. These findings prompted Tucker and colleagues to make iPSCs from the original patient.

"Induced pluripotent stem cells allow us to generate affected tissue from patients with genetic disorders and analyze how specific genetic mutations cause disease," Tucker said. "It's particularly powerful when we are looking at inaccessible tissues such as the retina and brain which are not usually biopsied in living individuals."

Although the MAK gene was previously thought to have 13 protein-coding segments known as exons, when the UI team cloned and sequenced the MAK gene, they discovered a new version of the gene found only in the retina, which has an extra protein-coding exon.

The team also found that the MAK mutation, which involves an insertion of a large piece of DNA into the MAK gene, disrupts the gene in such a way that retinal cells lose the ability to make the longer version of MAK protein.

"What we found was a new retina-specific exon; no other tissue that we tested had this version of the protein-coding transcript" Tucker said. "This is important because the gene mutation identified prevents the production of the retina-specific MAK protein.

"Evidence from the iPSC work validated the role of this genetic mutation in retinal disease. Showing that retinal cells generated from the affected patient could not make the mature retinal MAK protein provided strong evidence of the pathophysiologic mechanism of this mutation in RP," Tucker explained.

Based on the new work, the UI team hopes to explore gene therapy and cell replacement strategies as potential therapies for this form of RP.

The study was funded in part by grants from the National Eye Institute, National Institutes of Health New Innovator Award program and the Foundation Fighting Blindness.

"We are excited to see the University of Iowa and its collaborators bringing together several different research modalities, including genetics and stem cells, to save vision," said Stephen Rose, Ph.D., chief research officer, Foundation Fighting Blindness. "Their innovation and teamwork are greatly accelerating the development of treatments which our constituents are depending on."


Provided by University of Iowa Health Care
知 A Novel Method Pinpoints Cause of Genetic Blindness

August 08, 2011

Retinitis pigmentosa causes progressive vision loss for one in 4,000 people in the United States. It is not a single disease, however. Rather, it is a group of related conditions thought to be caused by mutations in more than 100 different genes. Fewer than half of those genes have been identified. A new approach, combining next-generation sequencing with stem cell research, has identified a new mutation that causes retinitis pigmentosa, and provides a strategy to tease out additional disease-causing genes.

Many of the mutations that cause retinitis pigmentosa (RP) occur only rarely, and pinning them down has proven remarkably difficult. Edwin Stone, the Howard Hughes Medical Institute investigator who led the new study, says it’s important to continue the search. “If there are 100 different genes that cause RP and we’ve already got half of them, you might ask, ‘Why do you need to find another one?’ You need another one if it’s yours,” he says. “If your disease-causing gene hasn’t been found yet, most of the prior discoveries won’t help you very much.”


“We were able to study the disease mechanism in this actual person, the person in whom the mutation was discovered.”
Edwin M. Stone  

In research published online the week of August 8, 2011, in Proceedings of the National Academy of Sciences, Stone’s team scanned the protein-coding DNA from a patient with a form of retinitis pigmentosa (RP) not caused by any of the mutations so far linked to the condition. After identifying a candidate mutation, they investigated its effects on the eye by creating stem cells from the patient’s skin, which they directed to develop into retinal cells in the lab. Though they began their study with a single patient, an analysis of DNA from a much larger group of individuals with RP turned up the newly identified the mutation in 20 additional people, or approximately one percent of the samples.

The process of identifying the new RP-causing mutation began when the team sequenced the patient’s exome—the portion of DNA that encodes proteins. Although the exome represents only about one percent of a person’s genome, it is where disease-causing mutations are most often found. Their next task was to weed through the resulting data to try to find the disease-causing gene. The difficulty is not just the size of the human genome -- six billion nucleotides -- it is the amount of normal genetic variation, which amounts to around six million differences from person to person. Locating the responsible mutation using the genome of just one affected individual is a challenging task, one that requires clever algorithms, a huge amount of computing power, and a healthy dose of luck says Stone, who worked with long-time collaborator and HHMI investigator Val Sheffield to do just that.

Stone and Sheffield, both at the University of Iowa, Department of Ophthalmology and Visual Sciences, discovered that there was a mutation in both copies of the patient’s MAK (male germ-cell associated kinase) gene. Expression of MAK had so far been associated with sperm cell development; the gene had never been shown to cause human vision loss. But sperm cells have one thing in common with the photoreceptor cells of the human retina: they both contain cilia, thin cellular extensions that act as sensory organelles. Defective cilia in photoreceptor cells can cause the type of vision loss associated with RP, and the researchers began to suspect this might be the case for the patient in their study.

To determine whether the mutation could be a plausible cause of disease, the researchers used donor tissue from human eyes to look for MAK proteins in the retina. Indeed, they found the protein in the inner segments of photoreceptor cells. “This was persuasive that MAK could cause RP, since it is present at the scene of the crime,” says Rob Mullins, a cell biologist researcher at the University of Iowa who participated in the research.

Budd Tucker, a stem cell scientist at the University of Iowa, also brought his expertise to the project, using a skin biopsy from the same RP patient to create a line of induced pluripotent stem cells, which can be prompted to differentiate into almost any tissue type. He coaxed the stem cells to develop into retinal cells, so that the researchers could see how the MAK mutation impacted the eye. “You can’t often biopsy someone’s retina to study the mechanism of an inherited disease,” Tucker says. “Even though sequencing identified a MAK mutation in this person, we couldn’t possibly tell exactly what it was doing to that person’s retina. Now we can.”

The genetic analysis indicated that the patient’s MAK gene had an inserted piece of extra DNA, but it was not entirely clear whether this would affect MAK’s function in the eye. The stem cell experiments provided an answer. The retinal cells derived from the patient with RP were unable to make MAK proteins at all. Retinal cells derived from a healthy patient, as well as those derived from a patient with a different genetic form of RP, had no such difficulties. “We were able to study the disease mechanism in this actual person, the person in whom the mutation was discovered,” Stone says. “This research unites next-generation sequencing with induced pluripotent stem cell technology.”

It was an experiment 20 years in the making. Once Stone and his colleagues had confirmed the mutation in the original patient, they went back to blood samples they’d collected from 1,800 patients with RP over the past two decades. They tested those samples for the MAK mutation and found 20 additional patients who shared the mutation, all of them—including the original patient—of Jewish ancestry.

Scrutinizing the exome of an individual with disease, someone with no affected family members, and wading through the noise to find the true mutation is an incredibly difficult task. In fact, the individual patient whose exome led to the discovery of the MAK mutation also harbored genes with two other known RP-causing mutations, neither of which alone cause disease. Those mutations were eventually ruled out as the cause for his condition, because each occurred on just one chromosome, and both copies of a gene must be mutated to cause recessive diseases like RP, but they complicated the search for the true culprit.

Following this success, the researchers now plan to apply the same combination of techniques to try to identify as many new RP genes as they can. Because there are so many potential RP-causing genes, many of them may be involved in less than one percent of patients with the condition. The ability to use iPSC technology to provide mechanistic confirmation of a mutation’s involvement in disease will be very helpful in identifying these rare causes of rare diseases, Stone says.
research team finds new genetic cause of blinding eye disease

Aug. 9, 2011

Combining the expertise of several different labs, University of Iowa researchers have found a new genetic cause of the blinding eye disease retinitis pigmentosa (RP) and, in the process, discovered an entirely new version of the message that codes for the affected protein.

The study, which was published online Aug. 8 in the Proceedings of the National Academy of Sciences (PNAS) Early Edition, suggests that the mutation may be a significant cause of RP in people of Jewish descent. The findings also lay the groundwork for developing prevention and treatment for this form of RP using a combination of genetic testing, gene therapy and cell replacement approaches.

Using the latest DNA sequencing techniques to analyze the protein-coding regions of a single RP patient's genome, the researchers found a mutation in a gene called MAK (male germ cell associated kinase). This gene had not previously been associated with eye disease in humans. However, examining tissue from donated eyes showed that MAK protein was located in the parts of the retina that are affected by the disease.

The researchers then generated induced pluripotent stem cells (iPSCs) from the patient's own skin cells and coaxed these immature cells to develop into retinal tissue. Analyzing this tissue showed that the gene mutation caused the loss of the MAK protein in the retina.

"These new technologies have greatly enhanced our ability to find and validate disease-causing mutations, which is critical to our ability to progress to the next step of actually treating diseases like RP," said Budd Tucker, Ph.D. (photo, top), UI assistant professor of ophthalmology and visual science and lead study author.

RP is an uncommon, inherited blinding eye disease that affects about 1 in 4,000 people in the United States. It is thought to be caused by mutations in more than 100 different genes, only half of which have been identified.

Having found the MAK mutation in one patient, UI researchers led by Edwin Stone, M.D., Ph.D., a Howard Hughes Medical Institute investigator and director of the UI Institute for Vision Research, screened the DNA of 1,798 patients with RP and identified 20 additional individuals with the same MAK mutation. This result suggests that the new MAK mutation accounts for about 1.2 percent of RP cases in the general population. Interestingly, all 21 of the RP patients with the MAK mutation were of Jewish descent, suggesting that the mutation may be a significant cause of RP in this population.

Work in the lab of Robert Mullins, Ph.D., UI associate professor of ophthalmology and visual sciences, showed that MAK protein was produced in the cells most affected by RP. These findings prompted Tucker and colleagues to make iPSCs from the original patient.

"Induced pluripotent stem cells allow us to generate affected tissue from patients with genetic disorders and analyze how specific genetic mutations cause disease," Tucker said. "It's particularly powerful when we are looking at inaccessible tissues such as the retina and brain which are not usually biopsied in living individuals."

Although the MAK gene was previously thought to have 13 protein-coding segments known as exons, when the UI team cloned and sequenced the MAK gene, they discovered a new version of the gene found only in the retina, which has an extra protein-coding exon.

The team also found that the MAK mutation, which involves an insertion of a large piece of DNA into the MAK gene, disrupts the gene in such a way that retinal cells lose the ability to make the longer version of MAK protein.

"What we found was a new retina-specific exon; no other tissue that we tested had this version of the protein-coding transcript" Tucker said. "This is important because the gene mutation identified prevents the production of the retina-specific MAK protein.

"Evidence from the iPSC work validated the role of this genetic mutation in retinal disease. Showing that retinal cells generated from the affected patient could not make the mature retinal MAK protein provided strong evidence of the pathophysiologic mechanism of this mutation in RP," Tucker explained.

Based on the new work, the UI team hopes to explore gene therapy and cell replacement strategies as potential therapies for this form of RP.

The study was funded in part by grants from the National Eye Institute, National Institutes of Health New Innovator Award program and the Foundation Fighting Blindness.

"We are excited to see the University of Iowa and its collaborators bringing together several different research modalities, including genetics and stem cells, to save vision," said Stephen Rose, Ph.D., chief research officer, Foundation Fighting Blindness. "Their innovation and teamwork are greatly accelerating the development of treatments which our constituents are depending on."

In addition to Tucker, Stone and Mullins, the research team included Todd Scheetz, Val Sheffield, Adam DeLuca, Jeremy Hoffman and Rebecca Johnston of the UI and Samuel Jacobson of the Scheie Eye Institute at the University of Pennsylvania.

STORY SOURCE: University of Iowa Health Care Media Relations, 200 Hawkins Drive, Room W319
我用翻译软件看了一上,有的内容差不多一样,但好像没提到什么好的治疗方法,说发现一些致病的原因等等,推特上面的字太小了。
6# 衰神附体
推特(Twitter logoTwitter)是国外的一个社交网络及微博客服务的网站。它利用无线网络,有线网络,通信技术,进行即时通讯,是微博客的典型应用。新浪微博就是仿推特而建立的。
返回列表