【摘要】 基因诊断技术的快速发展,为基因治疗奠定了基础并拓展了广阔空间。基因替代疗法、抗新生血管基因疗法、光遗传基因疗法等多种方法的视网膜疾病基因治疗临床试验正在开展,并取得丰硕成果,逐步证实了遗传性视网膜疾病基因治疗的有效性和安全性。新兴的基因编辑技术在治疗视网膜显性遗传或基因较大不能应用腺相关病毒载体治疗的隐性遗传病的动物试验研究方面也展现了良好的前景,使大部分视网膜遗传疾病理论上都有希望用安全高效腺相关病毒载体得到治疗。了解遗传性视网膜疾病基因治疗趋势与面临的挑战,各方共同努力面对挑战,相信基因治疗很快将造福于中国遗传性视网膜疾病患者。
Progress and challenge of gene therapy on inherited retinal diseases
Abstract: The rapid development of genetic diagnosis-related technologies has paved a wide road for gene therapy. Different gene therapy clinical trials for retinal disorders, including gene-replacement therapy, anti-neovascular gene therapy and opotogenetic gene therapy, have been developed and achieved fruitful results, which have gradually confirmed the efficacy and safety of AAV-mediated gene therapy for recessive retinal diseases. In recent years, novel gene editing technologies also shows great potential to treat dominant disease or recessive disease when the therapeutic gene is too big to fit adeno-associated virus (AAV) vectors. These results make it possible for most of the patients with inherited retinal diseases to be treated by the safe and effective AAV-mediated gene therapy, which will also benefit Chinese patients soon.
4 参考文献
[1] Pang JJ, Chang B, Kumar A, et al. Gene therapy restores vision-dependent behavior as well as retinal structure and function in a mouse model of RPE65 Leber congenital amaurosis[J]. Mol Ther, 2006,13(3): 565-572. DOI: 10.1016/j.ymthe.2005.09.001
[2] Acland GM, Aguirre GD, Ray J, et al. Gene therapy restores vision in a canine model of childhood blindness[J]. Nat Genet, 2001,28(1): 92-95. DOI: 10.1038/88327
[3] MacLaren RE, Groppe M, Barnard AR, et al. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial[J]. Lancet, 2014,383(9923): 1129-1137. DOI: 10.1016/S0140-6736(13)62117-0
[4] Al-Saikhan FI. The gene therapy revolution in ophthalmology[J]. Saudi J Ophthalmol, 2013,27(2): 107-111. DOI: 10.1016/j.sjopt.2013.02.001
[5] Kinnunen K, Yla-Herttuala S. Gene therapy in age related macular degeneration and hereditary macular disorders[J]. Front Biosci (Elite Ed), 2012,4: 2546-2557. DOI:
[6] Feuer WJ, Schiffman JC, Davis JL, et al. Gene Therapy for Leber Hereditary Optic Neuropathy: Initial Results[J]. Ophthalmology, 2016,123(3): 558-570. DOI: 10.1016/j.ophtha.2015.10.025
[7] 何颖, 戴旭锋, 张华, et al. Stargardt病基因治疗研究现状与进展[J]. 中华眼底病杂志, 2016,32(2): 224-227. DOI: 10.3760/cma.j.issn.1005-1015.2016.02.029
[8] 吴艺君, 郑钦象, 李文生. Leber先天性黑矇Ⅱ型基因治疗进展[J]. 中华眼底病杂志, 2014,30(5): 532-534. DOI: 10.3760/cma.j.issn.1005-1015.2014.05.030
[9] Jacobson SG, Cideciyan AV, Roman AJ, et al. Improvement and decline in vision with gene therapy in childhood blindness[J]. N Engl J Med, 2015,372(20): 1920-1926. DOI: 10.1056/NEJMoa1412965
[10] Cideciyan AV, Aleman TS, Boye SL, et al. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics[J]. Proc Natl Acad Sci U S A, 2008,105(39): 15112-15117. DOI: 10.1073/pnas.0807027105
[11] Schimmer J, Breazzano S. Investor Outlook: Significance of the Positive LCA2 Gene Therapy Phase III Results[J]. Hum Gene Ther Clin Dev, 2015,26(4): 208-210. DOI: 10.1089/humc.2015.29004.sch
[12] Schimmer J, Breazzano S. Investor Outlook: Focus on Upcoming LCA2 Gene Therapy Phase III Results[J]. Hum Gene Ther Clin Dev, 2015,26(3): 144-149. DOI: 10.1089/humc.2015.29001.sch
[13] Edwards TL, Jolly JK, Groppe M, et al. Visual Acuity after Retinal Gene Therapy for Choroideremia[J]. N Engl J Med, 2016,374(20): 1996-1998. DOI: 10.1056/NEJMc1509501
[14] 李光辉, 曾芳, 王晔恺, et al. 腺相关病毒载体在视网膜色素变性基因治疗中的应用研究进展[J]. 中华眼底病杂志, 2014,30(6): 636-639. DOI: 10.3760/cma.j.issn.1005-1015.2014.06.031
[15] Wan X, Pei H, Zhao MJ, et al. Efficacy and Safety of rAAV2-ND4 Treatment for Leber's Hereditary Optic Neuropathy[J]. Sci Rep, 2016,6: 21587. DOI: 10.1038/srep21587
[16] Cideciyan AV, Jacobson SG, Beltran WA, et al. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement[J]. Proc Natl Acad Sci U S A, 2013,110(6): E517-525. DOI: 10.1073/pnas.1218933110
[17] Hung SS, Chrysostomou V, Li F, et al. AAV-Mediated CRISPR/Cas Gene Editing of Retinal Cells In Vivo[J]. Invest Ophthalmol Vis Sci, 2016,57(7): 3470-3476. DOI: 10.1167/iovs.16-19316
[18] Cox DB, Platt RJ, Zhang F. Therapeutic genome editing: prospects and challenges[J]. Nat Med, 2015,21(2): 121-131. DOI: 10.1038/nm.3793
[19] Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9[J]. Science, 2014,346(6213): 1258096. DOI: 10.1126/science.1258096
[20] Hendriks WT, Warren CR, Cowan CA. Genome Editing in Human Pluripotent Stem Cells: Approaches, Pitfalls, and Solutions[J]. Cell Stem Cell, 2016,18(1): 53-65. DOI: 10.1016/j.stem.2015.12.002
[21] Bassuk AG, Zheng A, Li Y, et al. Precision Medicine: Genetic Repair of Retinitis Pigmentosa in Patient-Derived Stem Cells[J]. Sci Rep, 2016,6: 19969. DOI: 10.1038/srep19969
[22] Wu Y, Zhou H, Fan X, et al. Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells[J]. Cell Res, 2015,25(1): 67-79. DOI: 10.1038/cr.2014.160
[23] Ayala FJ. Cloning humans? Biological, ethical, and social considerations[J]. Proc Natl Acad Sci U S A, 2015,112(29): 8879-8886. DOI: 10.1073/pnas.1501798112